第14章 磁场H模-第2/3页



    “没错,h模要求我们必须将温度升到相应的阈值。”

    孙晓东和李庙林都知道这点,因此,何志永提供的耐高温纳米陶瓷材料成了关键。

    “但是只是完成h模是不够的,等离子体太难控制了,一但出现问题,反应炉的内壁会被瞬间击穿!”

    何志永轻笑一声说道:“我们对等离子体了解的太少了,托卡马克为了制造磁场输入了上千万安培的电流。”

    “磁场的人工撕裂会带来等离子体的未知变化。”

    “那这么说,托卡马克装置就算能成也很危险?”

    听到连何志永都对托卡马克不抱有希望,孙晓东心里咕咚一声,难道他们的路一直走错了?

    李庙林在一旁一直默不作声,静静的等待何志永接下来的话。

    “别急,孙教授,我还没说完呢!”

    何志永伸手做了个下压的手势,示意孙教授不必担心。

    “我在论文里对氘氚的推演你们看了没!”

    “我们的疑惑就在这个点上,为什么随着约束时间的推延,氘氚的等离子体更容易被控制,甚至比在温度h模的顶峰都好控制?”

    不止是孙晓东和李庙林,军方的科研人员的疑惑点也在这里。

    “上帝给人们关闭一扇门的时候就会留下通往外界的窗户!”

    何志永轻轻一笑,继续说道:“在几千万安培的电流下,均匀切割的磁场会让等离子体随时出现意外。”

    “就行h模一样,当这种磁场到达某种阈值时,等离子体反而更容易约束!”

    这是他从系统中得到的知识!

    就像h模一样,随着磁场的复杂程度上升,等离子体越难以约束。

    但是等到达某种阈值时,等离子体的约束难度就会突然下降!

    这也是托卡马克能够成功的关键!

    “这是磁场上的h模!”

    有了h模作为参考对象,孙晓东和李庙林瞬间就明白了!

    原来核聚变在磁场上也存在h模!

    这下就说的通了!

    等离子体的约束难度由于两个h模的影响,呈指数级下降。

    这就让托卡马克彻底的摆脱了定标率的限制!

    不用像iter那样高30米,直径30米的装置也能成功实现核聚变反应!

    孙晓东和李庙林瞬间就激动了起来,定标率的魔咒被破除了!

    “那要达到磁场h模,具体是什么数值?”

    李庙林看向何志永的眼神中充满着精光!

    他迫不及待的想要知道结果,然后在“east”上去验证这个结论!

    “经过我的推演,10t的强度就是磁场的阈值!”

    何志永看着李庙林的眼睛中充满了坚定!

    磁场h模是在前世的2029年被发现的,但是磁场和高温之间会爆发撕裂,因此那只是人类踏上无尽能源的一大步而已。

    但是何志永有耐高温纳米陶瓷材料,这种材料安装在托卡马克的内壁上,可以很大程度隔绝这种撕裂!

    10t,即10特斯拉,相当于20万倍地球磁场的强度!

    目前世界上磁场强度的托卡马克装置是米国的,达到了8t。

    这也是人类迟迟没有发现磁场h模的原因。...
    本章未完,请点击下一页继续阅读!