伯克利



    AcardinalκisaBerkeleycardinal,ifforanytransitivesetMwithκ∈Mandanyordinalα<κthereisanelementaryembeddingj:M?Mwithα<critj<κ.ThesecardinalsaredefinedinthecontextofZFsettheorywithouttheaxiomofchoice

    TheBerkeleycardinalsweredefinedbyW.HughWoodininabout1992athisset-theoryseminarinBerkeley,withJ.D.Hamkins,A.Lewis,D.Seabold,G.HjorthandperhapsR.Solovayintheaudience,amongothers,issuedasachallengetorefuteaseeminglyover-stronglargecardinalaxiom.Nevertheless,theexistenceofthesecardinalsremainsunrefutedinZF

    IfthereisaBerkeleycardinal,thenthereisaforcingextensionthatforcesthattheleastBerkeleycardinalhascofinalityω.ItseemsthatvariousstrengtheningsoftheBerkeleypropertycanbeobtainedbyimposingconditionsonthecofinalityofκ(Thelargercofinality,thestrongertheoryisbelievedtobe,uptoregularκ).IfκisBerkeleyanda,κ∈MforMtransitive,thenforanyα<κ,thereisaj:M?Mwithα<critj<κandj(a)=a

    Acardinalκiscalledproto-BerkeleyifforanytransitiveM?κ,thereissomej:M?Mwithcritj<κ.Moregenerally,acardinalisα-proto-BerkeleyifandonlyifforanytransitivesetM?κ,thereissomej:M?Mwithα<critj<κ,sothatifδ≥κ,δisalsoα-proto-Berkeley.Theleastα-proto-Berkeleycardinaliscalledδα

    WecallκaclubBerkeleycardinalifκisregularandforallclubsC?κandalltransitivesetsMwithκ∈Mthereisj∈E(M)withcrit(j)∈C

    WecallκalimitclubBerkeleycardinalifitisaclubBerkeleycardinalandalimitofBerkeleycardinals

    Relations

    IfκistheleastBerkeleycardinal,thenthereisγ<κsuchthat(Vγ,Vγ+1)?ZF2+“ThereisaReinhardtcardinalwitnessedbyjandanω-hugeaboveκω(j)”(Vγ,Vγ+1)?ZF2+“ThereisaReinhardtcardinalwitnessedbyjandanω-hugeaboveκω(j)”

    Foreveryα,δαisBerkeley.ThereforeδαistheleastBerkeleycardinalaboveα

    Inparticular,theleastproto-Berkeleycardinalδ0isalsotheleastBerkeleycardinal

    IfκisalimitofBerkeleycardinals,thenκisnotamongtheδα

    EachclubBerkeleycardinalistotallyReinhard

    TherelationbetweenBerkeleycardinalsandclubBerkeleycardinalsisunknown

    IfκisalimitclubBerkeleycardinal,then(Vκ,Vκ+1)?“ThereisaBerkeleycardinalthatissuperReinhardt”.Moreover,theclassofsuchcardinalsarestationary

    ThestructureofL(Vδ+1)

    IfδisasingularBerkeleycardinal,DC(cf(δ)+),andδisalimitofcardinalsthemselveslimitsofextendiblecardinals,thenthestructureofL(Vδ+1)issimilartothestructureofL(Vλ+1)undertheassumptionλisI0;i.e.thereissomej:L(Vλ+1)?L(Vλ+1).Forexample,Θ=ΘL(Vδ+1)Vδ+1,thenΘisastronglimitinL(Vδ+1),δ+isregularandmeasurableinL(Vδ+1),andΘisalimitofmeasurablecardinals


    本章完