第190章讲课时间-第3/4页



奇点是天体物理学概念,认为宇宙刚生成时的那一状态。

在以上两种情况下,方程式都没有考虑量子理论。

当我们处理的物体小于普朗克长度,或时间短于普朗克时间时,已知的物理学定律,包括广义相对论,看来真会失效。

这意味着,在那样的尺度上,合情合理的设想将是,向奇点坍缩的物质受到量子过程的影响,有可能‘反弹’而转为向外膨胀到另一组维度中去。

有人主张,大爆炸‘奇点’实际上就是这样一种反弹。

其中还有一个实验。

通过广义相对论将宇宙的膨胀进行时间反演,则可得出宇宙在过去有限的时间之前曾经处于一个密度和温度都无限高的状态,称之为奇点,奇点的存在意味着广义相对论理论在这里不适用。

而仍然存在争论的问题是,借助广义相对论我们能在多大程度上理解接近奇点的物理学——可以肯定的是不会早于普朗克时期。

宇宙极早期这一高温高密的相态被称作“大爆炸”,这被看作是我们宇宙的诞生时期。

关于大爆炸模型中极早期宇宙的相态问题,至今人们仍充满了猜测。

在大多数常见的模型中,宇宙诞生初期是由均匀且各向**的高密高温高压物质构成的,并在极早期发生了非常快速的膨胀和冷却。

大约在膨胀进行到10^-37秒时,产生了一种相变使宇宙发生暴涨,在此期间宇宙的膨胀是呈指数增长的。

当暴涨结束后,构成宇宙的物质包括夸克-胶子等离子体,以及其他所有基本粒子。

此时的宇宙仍然非常炽热,以至于粒子都在做着相对论性的高速随机运动,而粒子-反粒子对在此期间也通过碰撞不断地创生和湮灭,从而宇宙中粒子和反粒子的数量是相等的,宇宙中的总重子数为零。

直到其后的某个时刻,一种未知的违反重子数守恒的反应过程出现,它使夸克和轻子的数量略微超过了反夸克和反轻子的数量——超出范围大约在三千万分之一的量级上,这一过程被称作重子数产生。

这一机制导致了当今宇宙中物质相对于反物质的主导地位。

随着宇宙的膨胀和温度进一步的降低,粒子所具有的能量也普遍逐渐下降。

当能量降低到1太电子伏特时产生了对称破缺,这一相变使基本粒子和基本相互作用形成了当今我们看到的样子。

【话说,目前朗读听书最好用的app,咪咪阅读,www.mimiread.com 安装最新版。】

宇宙诞生的10^-11秒之后,大爆炸模型中猜测的成分就进一步减少了,因为此时的粒子能量已经降低到了高能物理实验所能企及的范围。

10^-6秒之后,夸克和胶子结合形成了诸如质子和中子的重子族,由于夸克的数量要略高于反夸克,重子的数量也要略高于反重子。此时宇宙的温度已经降低到不足以产生新的质子-反质子对,从而即刻导致了粒子和反粒子之间的质量湮灭,这使得原有的质子和中子仅有十亿分之一的数量保留下来,而对应的所有反粒子则全部湮灭。

大约在1秒之后,电子和正电子之间也发生了类似的过程。

经过这一系列的湮灭,剩余的质子、中子和电子的速度降低到相对论性以下,而此时的宇宙能量密度的主要贡献来自湮灭产生的大量光子。

在大爆炸发生的几分钟后,宇宙的温度降低到大约十亿开尔文的量级,密度降低到大约空气密度的水平。

少数质子和所有中子结合,组成氘和氦的原子核,这个过程叫做太初核合成。

而大多数质子没有与中子结合,形成了氢的原子核。

随着宇宙的冷却,宇宙能量密度的主要来自静止质量产生的引力的贡献,并超过原先光子以辐射形式的能量密度。

虽然宇宙在大尺度上物质几乎均一分布,但仍存在某些密度稍大的区域,因而在此后相当长的一段时间内这些区域内的物质通过引力作用吸引附近的物质,从而变得密度更大,并形成了气体云、恒星、星系等。这一过程的具体细节取决于宇宙中物质的形式和数量,其中形式可能有三种:冷暗物质、热暗物质和重子物质。

其实这些说来说去,就是一个东西热胀冷缩,就比方说一个气球,他受到阳光的直射,里面的气体产生剧烈的运动,造成膨胀,然后,‘嘭’的一声就炸了。”...
    本章未完,请点击下一页继续阅读!